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Abstract

The substructuring technology possesses much merit when it is utilized in model updating or damage identification of

large-scale structures. However, the conventional substructuring technologies require the complete eigensolutions of all

substructures available to obtain the eigensolutions of the global structure, even if only a few eigensolutions of the global

structure are needed. This paper proposes a modal truncation approximation in substructuring method, in which only the

lowest eigensolutions of the substructures need to be calculated. Consequently, the computation efficiency is improved.

The discarded higher eigensolutions are compensated by the residual flexibility. The division of substructures and the

selection of master modes in each substructure are also studied. The proposed substructuring method is illustrated by a

frame structure and a practical bridge. The two case studies verify that the proposed method can improve the original

substructuring method significantly.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, finite element (FE) model updating technique has been widely developed in aerospace,
mechanical and civil engineering. During FE model updating process, elemental parameters in the FE model
are iteratively modified, so that the modal properties (such as frequencies and mode shapes) match the
measured counterparts in an optimal way [1]. To achieve this, the eigensolutions and the sensitivity matrix of
the analytical model need to be calculated repeatedly [2]. When tackling large-scale structures, three major
difficulties arise. Firstly, since the analytical model of a large-scale structure consists of many degrees of
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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freedom (dofs), the resulting mass matrix and stiffness matrix need very large space to store. Secondly, and
more importantly, the computation effort may be great in extracting the eigensolutions and sensitivity matrix
from the mass and stiffness matrices, which need to be calculated repeatedly. Thirdly, the number of
parameters that need to be updated in a large-scale structure can be large, which may hinder the convergence
of the optimization process.

To overcome these difficulties, the substructuring method will be a good preference. Firstly, it is possible to
analyze each substructure independently, or even concurrently with parallel computing [3]. While identical
substructures exist, the computation load is reduced further. Secondly, when only particular substructures
need to be focused on, it is more efficient to calculate the eigensolutions and sensitivity matrix of the particular
substructures iteratively during the model updating process. Thirdly, the number of parameters updated in
each substructure is much less than that in the global structure. This improves the convergence of model
updating process. Handling smaller problems at a time can improve the accuracy of the solutions since
accumulated error during the computation is reduced [4]. In addition, the substructuring method is potentially
advantageous when applied together with model reduction technique. Most model reduction methods usually
take up a large amount of computation time for the construction of the reduced system. With the
substructuring method, the reduced system can be constructed based on the substructures and then be
assembled, so the computation load can be reduced [5,6].

When utilizing the substructuring concept in the sensitivity based model updating, it is the first step to obtain
the eigensolutions via the substructuring method. Substructuring technique for the calculation of eigensolutions
includes two categories, one is component mode synthesis and the other one is the Kron’s substructuring
method. The component mode synthesis method can be further classified into three groups according to the
interface condition of the substructures, i.e., free-interface method [7], fixed-interface method [8,9], and hybrid
method [10,11]. In component mode synthesis method, the modes of the substructures are divided into several
parts, and each part needs to be calculated, respectively. Nevertheless, in the Kron’s substructuring method, the
boundary condition of the substructures is not required to be particularly considered.

Kron firstly proposed a substructuring method in the book Diakoptics [12] to study the eigensolutions of the
systems with a very large number of variables in a piecewise manner. It constituted the receptance matrix by
imposing displacement constraints at the tearing coordinates of the adjacent substructures via the Lagrange
multiplier technique and virtual work theorem. Simpson and Tabarrok [13] initiated Kron’s complicated
electrical notation into its structural receptance form, and searched the eigenvalues by the bisection scanning
and the sign count algorithm. Afterwards, Simpson [14] replaced the receptance form with a transcendental
dynamic stiffness matrix. The Newtonian process is utilized to accelerate the computation speed. Williams and
Kennedy [15] proposed a multiple determinant parabolic interpolation method to ensure the successful
convergence on the required eigenvalues in all circumstances, and further improved the Simpson’s Newtonian
method [14]. Lui [16] discussed some theoretical aspects of the Kron’s receptance matrix, such as the zeros and
poles of the eigenvalues, and summarized detailed characteristics of the Kron’s substructuring method.

Sehmi analyzed the Kron’s receptance matrix with numerical solution, such as Subspace Iteration method
[17] and Lanczos method [18]. Mackenzie [19] validated this substructuring method and showed that the in-
core requirements and operational counts were very competitive when Subspace Iterative and Lanczos
techniques were introduced.

In Kron’s substructuring method, it is indispensable to evaluate the contribution of the complete
eigensolutions of all substructures when assembling the primitive system, i.e., calculating all eigenpairs of each
substructure primarily. This is onerous and time-consuming, since only the first a few eigensolutions are
generally of interest for most researchers. Turner [20] attempted to reduce the computation load by static mass
condensation, but the results were not precise enough to satisfy the usual requirement. Subsequently, this
method was ignored by researchers, because it was not comparable to other fast eigensolvers, such as Lanczos
method and Subspace Iteration method. To facilitate the substructuring-based model updating, Kron’s
substructuring method should be improved in terms of efficiency and accuracy.

This paper aims to improve the Kron’s substructuring method to calculate the eigensolutions of the large-
scale structures using modal truncation approximation. In the proposed method, only the first a few
eigensolutions of each substructure need to be calculated. The discarded eigensolutions of the substructures
are compensated with residual flexibility, including the first-order residual flexibility and the second-order
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residual flexibility. The improvement on the efficiency and accuracy of the proposed substructuring method is
illustrated by a frame structure and a practical bridge structure. The results demonstrate that the proposed
method can reduce computation load while achieving high precision.

2. Basic theorem of substructuring method

For a global structure with N dofs, its stiffness matrix and mass matrix will be order of N�N. Application
of the substructuring method firstly requires that the global structure is torn or divided into NS independent
substructures [21], and each substructure has nj dofs (j ¼ 1,2,y,NS). This division procedure will produce NT

tearing dofs. Each one tearing dof will become into two or more dofs after division, i.e. a tearing dof in the
original global structure is shared by two or more substructures that are connected to it. The total number of
dofs of all substructures will be expanded to NP, which is larger than N.

If the mth (m ¼ 1,2,y,NT) tearing dof is shared by tm substructures, one has

NP ¼ N þ
XNT

m¼1

ðtm � 1Þ; NP ¼
XNS

j¼1

nj (1)

To be viewed as an independent structure, each substructure has its stiffness matrix K
(j) and mass matrix M

(j)

(j ¼ 1,2,y,NS). The generalized eigen-equation of the jth substructure can be written as

KðjÞffðjÞi g ¼ lðjÞi MðjÞffðjÞi g (2)

both the stiffness matrix K(j) and the mass matrix M(j) are of order nj� nj. l
ðjÞ
i and ffðjÞi g are the ith eigenvalue

and eigenvector of the jth substructure, respectively. Eq. (2) yields nj eigenvalues KðjÞ ¼ Diag½lðjÞ1 ; l
ðjÞ
2 ; . . . ; l

ðjÞ
nj
�,

and the corresponding eigenvectors UðjÞ ¼ ½fðjÞ1 ;f
ðjÞ
2 ; . . . ;f

ðjÞ
nj
�.

With mass normalization, one has

½UðjÞ�TMðjÞUðjÞ ¼ Inj

½UðjÞ�TKðjÞUðjÞ ¼ KðjÞ

(
(3)

Diagonal assembling the substructures to the primitive form gives

Mp ¼ Diag½Mð1Þ;Mð2Þ; . . . ;MðNSÞ� Kp ¼ Diag½Kð1Þ;Kð2Þ; . . . ;KðNSÞ�

Up ¼ Diag½Uð1Þ;Uð2Þ; . . . ;UðNSÞ� Kp
¼ Diag½Kð1Þ;Kð2Þ; . . . ;KðNSÞ

� (4)

where superscript ‘p’ denotes the variables associated with the primitive form, and the size of the above
matrices is NP�NP. Due to the orthogonality conditions in Eq. (3), it follows that:

½Up�TMpUp ¼ INP

½Up�TKpUp ¼ KP

(
(5)

Reconnection of the primitive system can be performed by considering the geometric compatibility and force
equilibrium at the tearing points of the adjacent substructures. If {x} is the displacement vector of the original
global structure with the size of N� 1, it can be expanded to fxg with the size of NP� 1 after substructuring,
which includes identical displacements in the tearing dofs. The geometric compatibility is enforced by applying
displacement constraints as

Cfxg ¼ 0 (6)

C is a rectangular matrix which contains general implicit constraints to make sure the nodes at the interface
have identical displacement, which is described in Appendix A.

With the virtual work theorem, the motion equation of the undamped structure is

Mpf €̄xg þ Kpfxg ¼ Fext þ Fcon (7)
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For a free vibration system, external excitation force Fext ¼ 0, and the virtual work done by the connection
forces Fcon along fxg is

dW ¼ FT
confdxg (8)

Considering the connection process to be incomplete, the compatibility is violated at the tearing coordinates
by an amount of {Z}. Eq. (6) becomes

Cfxg ¼ fZg (9)

In the new coordinates there will be an associated force vector {t}, representing the internal connection forces
due to the ‘misfit’. Combination of Eqs. (8) and (9) gives

dW ¼ ftgTfdZg ¼ ftgTCfdxg (10)

From Eqs. (8) and (10), one can obtain

FT
confdxg ¼ ftgTCfdxg (11)

It is obvious that

Fcon ¼ CT
ftg (12)

Consequently, Eq. (7) can be transformed into

Mp 0

0 0

� � €̄x

€t

( )
þ

Kp �CT

�C 0

" #
x

t

� �
¼

0

0

� �
(13)

Assuming the oscillatory solution of the form fx; tgT ¼ ff; tgT expði
ffiffiffiffiffi
lt

p
Þ, the expanded mode shape of the

global structure can be related to the primitive form of the mode shapes Up via the modal coordinates z as [22]

f

t

( )
¼

Up 0

0 I

� �
z

t

� �
(14)

where f is the expanded mode shape of the global structure including identical values in the interface dofs.
Considering the orthogonality relations in Eq. (5), Eq. (13) can be transformed into the canonical form

Kp
� lI �C

�CT 0

" #
z

t

� �
¼

0

0

� �
(15)

where C ¼ ðCUpÞ
T is referred to as the normal connection matrix. With the above-described procedure, the

nodes at the tearing points of the adjacent structures are constrained to move jointly. Therefore, the eigenvalue
l obtained with Eq. (15) is equal to the eigenvalue l belonging to the original global structure. If Ūconsists of
the expanded eigenvectors f, the eigenvectors of the global structure U can be obtained after discarding the
identical dofs in Ū. C has the order of NP� ðNP�NÞ, where (NP�N) is the number of constraint relations
and much less than NP.

The first equation of Eq. (15) gives

z ¼ ðKp
� lIÞ�1Ct (16)

Substituting Eq. (16) into the second equation of Eq. (15) to eliminate the modal coordinates z, one has

CTðKp
� lIÞ�1Ct ¼ 0 or Rt ¼ 0 (17)

in which R ¼ CTDC and D ¼ ðKp
� lIÞ�1.

The matrix R with size of ðNP�NÞ � ðNP�NÞ, is known as the Kron matrix or receptance matrix [17].
Since the above analysis has no approximation in the derivation of R, the eigenvalues obtained will be
identical to the initial structural idealizations made in the FE modeling of the global structure.

l is obtained by scanning R’s determinant in the original Kron’s method [23]. Obviously, this is very time-
consuming since R is dependent on the unknown l [24]. Sehmi [17,18] applied numerical approaches
(Subspace Iteration method and Lanczos method) to the Kron’s substructuring method, and estimated the



ARTICLE IN PRESS
S. Weng et al. / Journal of Sound and Vibration 323 (2009) 718–736722
eigensolutions more efficiently. Nevertheless, it is onerous to calculate the complete eigensolutions of each
substructure to assemble Kp and Up. Further, the final eigen-equation for searching eigensolutions has the size
of NP�NP, which will be very large for large-scale structures.

To overcome this, the present paper will improve the efficiency of the Kron’s substructuring method by
introducing a modal truncation technique. This is based on the fact that the higher modes have little
contribution to the receptance matrix. The first-order simplification will be intended firstly, followed by a
second-order counterpart.

3. First-order residual flexibility based modal truncation

In each substructure, a few eigensolutions, which correspond to lower vibration modes, are selected as
‘master’ variables. The residual higher modes are treated as ‘slave’ variables. Similar to the model reduction
technique [5,6,25], the masters will be retained while the slaves are discarded in the later calculations. Subscript
‘m’ and ‘s’ will represent ‘master’ and ‘slave’ variables, respectively, hereinafter.

Assuming that the first mj (j ¼ 1,2,y,NS) modes are chosen as the ‘master’ modes in the jth substructure
while the residual sj higher modes are the ‘slave’ modes, the jth substructure has ‘master’ eigenpairs and ‘slave’
eigenpairs as

KðjÞm ¼ Diag½lðjÞ1 ; l
ðjÞ
2 ; . . . ; l

ðjÞ
mj
�

UðjÞm ¼ ½f
ðjÞ
1 ;f

ðjÞ
2 ; . . . ;f

ðjÞ
mj
�

KðjÞs ¼ Diag½lðjÞmjþ1
; lðjÞmjþ2

; . . . ; lðjÞmjþsj
�

UðjÞs ¼ ½f
ðjÞ
mjþ1

;fðjÞmjþ2
; . . . ;fðjÞmjþsj

�

mp ¼
XNS

j¼1

mj ; sp ¼
XNS

j¼1

sj ; mj þ sj ¼ nj ðj ¼ 1; 2; . . . ;NSÞ (18)

Assembling all ‘master’ eigenpairs and ‘slave’ eigenpairs, respectively, one has

Kp
m ¼ Diag½Kð1Þm ;K

ð2Þ
m ; . . . ;K

ðNSÞ
m �

Up
m ¼ Diag½Uð1Þm ;U

ð2Þ
m ; . . . ;U

ðNSÞ
m �

Kp
s ¼ Diag½Kð1Þs ;K

ð2Þ
s ; . . . ;K

ðNSÞ
s �

Up
s ¼ Diag½Uð1Þs ;U

ð2Þ
s ; . . . ;U

ðNSÞ
s � (19)

Denoting Cm ¼ ½CUp
m�

T and Cs ¼ ½CUp
s �
T, Eq. (15) can be expanded as

Kp
m � lI 0 �Cm

0 Kp
s � lI �Cs

�CT
m �CT

s 0

2
64

3
75

zm

zs

t

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>; (20)

The second equation of Eq. (20) gives

zs ¼ ðK
p
s � lIÞ�1Cst (21)

Substituting Eq. (21) into Eq. (20) results in

Kp
m � lI �Cm

�CT
m �CT

s ðK
p
s � lIÞ�1Cs

" #
zm

t

� �
¼

0

0

� �
(22)
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In Eq. (22), the Taylor expansion principle introduces

ðKp
s � lIÞ�1 ¼ ðKp

s Þ
�1
þ lðKp

s Þ
�2
þ l

2
ðKp

s Þ
�3
þ � � � (23)

In general, the required eigenvalues l correspond to the lowest modes of the global structure, and far less than
the items in Kp

s when proper size of the master is chosen. In that case, retaining only the first item of the Taylor
expansion, Eq. (22) is approximated as

Kp
m � lI �Cm

�CT
m �CT

s ðK
p
s Þ
�1Cs

" #
zm

t

� �
¼

0

0

� �
(24)

Resolving t from the second equation of Eq. (24) and substituting it into the first equation, one can obtain that

½Kp
m þ CmðC

T
s ðK

p
s Þ
�1CsÞ

�1CT
m�zm ¼ lzm (25)

then the final standard form of eigen-equation can be expressed as

Wzm ¼ lzm (26)

where W ¼ Kp
m þ CmðC

T
s ðK

p
s Þ
�1CsÞ

�1CT
m, CðKp

s Þ
�1Cs ¼ CUp

s ðK
p
s Þ
�1
½Up

s �
TCT.

Up
s ðK

p
s Þ
�1
½Up

s �
T is regarded as the first-order residual flexibility. The detailed transformation concerning the

first-order residual flexibility is given in Appendix B. The first-order residual flexibility of the jth substructure is

UðjÞs ðK
ðjÞ
s Þ
�1
½UðjÞs �

T ¼ K�1 �UðjÞm ðK
ðjÞ
m Þ
�1
½UðjÞm �

T (27)

For the primitive system, the first-order residual flexibility is obtained as

Up
s ðK

p
s Þ
�1
½Up

s �
T

¼

Uð1Þs 0 � � � 0

0 Uð2Þs � � � 0

..

. ..
. . .

. ..
.

0 0 � � � UðNSÞ
s

2
66666664

3
77777775

ðKð1Þs Þ
�1 0 � � � 0

0 ðKð2Þs Þ
�1
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � ðKðNSÞ
s Þ

�1

2
66666664

3
77777775

½Uð1Þs �
T 0 � � � 0

0 ½Uð2Þs �
T � � � 0

..

. ..
. . .

. ..
.

0 0 � � � ½UðNSÞ
s �T

2
66666664

3
77777775

¼

Uð1Þs ðK
ð1Þ
s Þ
�1 Uð1Þs

� �T
0 � � � 0

0 Uð2Þs ðK
ð2Þ
s Þ
�1
½Uð2Þs �

T � � � 0

..

. ..
. . .

. ..
.

0 0 � � � UðNSÞ
s ðKðNSÞ

s Þ
�1
½UðNSÞ

s �T

2
66666664

3
77777775

¼

ðKð1ÞÞ�1 �Uð1Þm ðK
ð1Þ
m Þ
�1
½Uð1Þm �

T 0 � � � 0

0 ðKð2ÞÞ�1 �Uð2Þm Kð2Þm

	 
�1
½Uð2Þm �

T � � � 0

..

. ..
. . .

. ..
.

0 0 � � � ðKðNSÞÞ
�1
�UðNSÞ

m ðKðNSÞ
m Þ

�1
½UðNSÞ

m �T

2
66666664

3
77777775
(28)

Therefore, the first-order residual flexibility of the primitive form can be regarded as the diagonal assembly of
the substructures’ first-order residual flexibility as

Up
s ðK

p
s Þ
�1
½Up

s �
T ¼ Diag½ððKð1ÞÞ�1 �Uð1Þm ðK

ð1Þ
m Þ
�1
½Uð1Þm �

TÞ; . . . ; ððKðNSÞÞ
�1
�UðNSÞ

m ðKðNSÞ
m Þ

�1
½UðNSÞ

m �TÞ� (29)

Subsequently, the eigen-equation (Eq. (26)) can be evaluated with standard Subspace Iteration or Lanczos
method [26]. The eigenvectors z of this equation are based on the modal coordinates. The expanded
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eigenvectors of the global structure in the physical coordinates can be recovered by

U ¼ Up
mzm (30)

Finally, the eigenvectors of the global structure U can be directly obtained after discarding the identical values

at the tearing points in U.
In this section, the higher modes of the substructures are compensated by the first-order residual flexibility,

which is entitled as First-order residual flexibility-based substructuring (FRFS) method. The matrix W for
eigensolutions is reduced to the size of mp

�mp, which is much less than the original one (NP�NP). In the
FRFS method, only the first item of Taylor expansion is retained. Theoretically, this simplification is accurate
only at zero frequency. The approximation is satisfied when the interested eigenvalues l are far less than the
minimum value of Kp

s . If the interested eigenvalues become large, the results may be not accurate enough.
Therefore, if a higher calculation precision is required, the second item of Taylor expansion (Eq. (23)) should
be retained.
4. Second-order residual flexibility based modal truncation

If the first two items of the Taylor expansion in Eq. (23) are retained, Eq. (22) becomes

Kp
m � lI �Cm

�CT
m �ðCT

s ðK
p
s Þ
�1Cs þ lCT

s ðK
p
s Þ
�2CsÞ

" #
zm

t

� �
¼

0

0

� �
(31)

After arranging Eq. (31), the standard form of eigen-equation can be expressed as

Kp
m �Cm

�CT
m �CT

s ðK
p
s Þ
�1Cs

" #
zm

t

� �
¼ l

I 0

0 CT
s ðK

p
s Þ
�2Cs

" #
zm

t

� �
(32)

In Eq. (32),

CT
s ðK

p
s Þ
�1Cs ¼ CUp

s ðK
p
s Þ
�1
½Up

s �
TCT

CT
s ðK

p
s Þ
�2Cs ¼ CUp

s ðK
p
s Þ
�2
½Up

s �
TCT

(
(33)

Up
s ðK

p
s Þ
�2
½U�T is referred to as the second-order residual flexibility. Formation of the second-order residual

flexibility can be found in Appendix B. With the same procedure described in previous section, the primitive
form of the second-order residual flexibility can also be obtained by the diagonal assembling of the
substructures’ second-order residual flexibility as

Up
s ðK

p
s Þ
�2
½Up

s �
T ¼ Diag½ððKð1ÞÞ�1MðKð1ÞÞ�1 �Uð1Þm ðK

ð1Þ
m Þ
�2
½Uð1Þm �

TÞ; . . . ; ððKðNSÞÞ
�1MðKðNSÞÞ

�1

�UðNSÞ
m ðKðNSÞ

m Þ
�2
½UðNSÞ

m �TÞ� (34)

With both the first- and second-order flexibility in Eqs. (29) and (34), the subsequent procedure of obtaining
the eigensolutions of the global structure is similar with that of the FRFS method.

As compared with the FRFS procedure introduced previously, this second-order residual flexibility-based
substructuring (SRFS) method will achieve much more accurate results since it includes the second item in the
Taylor expansion. However, this high precision is achieved at the cost of computation load in terms of two
aspects: (i) the SRFS method has to spend some additional CPU effort to calculate the second-order residual
flexibility Up

s ðK
p
s Þ
�2
½Up

s �
T; and (ii) the size of the eigen-equation in the SRFS method (Eq. (32)), which contains

the ‘misfit’ displacement at tearing points, is larger than that of the FRFS method.
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5. Error quantification

In the FRFS method, the approximation is introduced by replacing ðKp
s � lIÞ�1 with ðKp

s Þ
�1. Consequently,

the error introduced by this approximation is

Error ¼ ðKp
s � lIÞ�1 � ðKp

s Þ
�1
¼

1

ðKp
s Þ1 � l

�
1

ðKp
s Þ1

. .
.

1

ðKp
s Þsp � l

�
1

ðKp
s Þsp

2
66666664

3
77777775

¼

l

ððKp
s Þ1 � lÞðKp

s Þ1

. .
.

l

ððKp
s Þsp � lÞðKp

s Þsp

2
666666664

3
777777775
¼ Diag

l

ððKp
s Þi � lÞðKp

s Þi

 !
(35)

Relative error ¼ Diag

l
ððKp

s Þi�lÞðK
p
s Þi

1

ðKp
s Þi�l

0
@

1
A ¼ Diag

l
ðKp

s Þi

� �
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Therefore, the largest relative error ¼ l=minðKp
s Þ.

Similarly, in the SRFS method, the error introduced by Taylor expansion is
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s � lIÞ�1 � ðKp

s Þ
�1
� lðKp

s Þ
�2
¼ Diag

1

ðKp
s Þi � l

�
1

ðKp
s Þi
�

l

ðKp
s Þ

2
i

 !

¼ Diag
ðKp

s Þ
2
i � ððK

p
s Þi � lÞðKp

s Þi � lððKp
s Þi � lÞ

ððKp
s Þi � lÞðKp

s Þ
2
i

 !
¼ Diag

l
2

ððKp
s Þi � lIÞðKp

s Þ
2
i

 !
(37)
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ði ¼ 1; 2; . . . ; spÞ (38)

The largest relative error ¼ ðl=minðKp
s ÞÞ

2.
The relative error in both the FRFS method and the SRFS method is dependent on l=minðKp

s Þ. This
demonstrates that, if the required eigenvalues l are far less than the minimum value of Kp

s , the introduced
error will be insignificant. The minimum value of Kp

s will control the accuracy of the method. Since general
eigensolvers can compute some lowest eigensolutions, one should determine how many master modes need to
be calculated in each substructure. This will be described in later examples.

6. Example 1: a frame structure

The first example presented here serves to illustrate the entire procedure of the proposed substructuring
method in details.

The global frame is shown in Fig. 1. The material constants are chosen as: bending rigidity (EI) ¼ 170�
106Nm2, axial rigidity (EA) ¼ 2500� 106N, mass per unit length (rA) ¼ 110 kg/m, and Poisson’s ratio ¼ 0.3.
The frame is discretized into 160 two-dimensional beam elements each 2.5m long, which results in 140 nodes
and 408 dofs (N ¼ 408). The frame is disassembled into three substructures (NS ¼ 3) when it is torn at eight
nodes as shown in Fig. 2. After division, there are 51, 55, 42 nodes in the three substructures with the dofs of
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Fig. 1. The original global frame.
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n1 ¼ 153, n2 ¼ 165, n3 ¼ 114, respectively. The eight tearing nodes introduce 48 tearing dofs (each node has 3
dofs) with 24 identical/repeated ones. Therefore, the primitive form of the assembled substructures have
NP ¼ 432 dofs in total and NT ¼ 24 displacement constraints.

For comparison, the frame will be analyzed with four approaches to extract the first 20 eigensolutions of the
global structure.

In the first approach, the frame is analyzed by the original Kron’s substructuring method [18], in which the
whole eigensolutions of each substructure are calculated to assemble the primitive matrices. The primitive
matrices have the size of 432� 432 and are solved with the standard Lanczos eigensolver. Because the
contribution of the complete modes in each substructure is considered and there is no approximation during
the whole process, the obtained eigensolutions can be regarded as accurate.

In the second approach, the first 50 modes of each substructure are calculated, while the residual high modes
are discarded directly. Other than the proposed method, the residual high modes here are discarded without
any compensation. Similar to the previous process, the eigen-equation can be obtained but with the size of
150� 150.

Thirdly, the frame is analyzed by the proposed method with the FRFS scheme. The first 50 modes in each
substructure are chosen as ‘master’, while the higher modes are compensated by the first-order residual
flexibility. The procedure consists of the following steps:
(1)
 Divide the global structure into three substructures. Each substructure is regarded an independent
structure, and the nodes and elements are labeled individually.
(2)
 Obtain the first 50 eigensolutions of the three substructures, and calculate the first-order residual flexibility
of each substructure. For the substructures 1 and 2, a small shift ‘1’ is introduced because the two
substructures become free-free and include zero frequencies.
(3)
 Assemble the primitive form of the master eigensolutions Kp
m and Up

m with the master modes of the three
substructures. Kp

mand Up
m are the size of 150� 150 and 150� 432, respectively.



ARTICLE IN PRESS

TEAR 2

TEAR 1

SUBSTRUCTURE 3

Number of nodes = 42

Degrees of freedom = 114

SUBSTRUCTURE 2

Number of nodes = 55

Degrees of freedom = 165

SUBSTRUCTURE 1

Number of nodes = 51

Degrees of freedom = 153

12
.5

m
15

m
12

.5
m

Fig. 2. The primitive system with three substructures.
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(4)
 Process the connection matrix C. There are eight tearing points and each has 3 dofs, which introduce the
connection matrix of order 24� 432.
(5)
 Form the matrix W of order 150� 150 in Eq. (26) according to the procedure described in Section 3, and
solve the eigen-equation with standard Lanczos method.
(6)
 Recover the eigenvectors of the global structure by discarding the identical coordinates from the expanded
eigenvectors of the global structure.
Finally, the frame is investigated with the SRFS method. Likewise, the first 50 modes in each substructure
are chosen as master modes. The process is similar to the FRFS method except the final step in forming the
eigen-equation. In this step, the eigen-equation (Eq. (32)) contains the ‘misfit’ displacement t, and has the size
of 174� 174. The eigensolutions of the global structure can then be obtained from this eigen-equation.

The first 20 frequencies of the global structure are obtained from the above-mentioned four approaches and
listed in Table 1 for comparison. In this table, ‘Lanczos’ represents the results obtained from the traditional
Lanczos method without substructuring; ‘Original’ refers to the original Kron’s substructuring method, which
includes all eigensolutions of each substructure; ‘Original-Partial’ represents the substructuring method
adopting partial modes, in which only the first 50 modes are retained while the residual higher modes are
discarded directly; ‘FRFS’ indicates the proposed FRFS method, and ‘SRFS’ indicates the proposed SRFS
method. The second line of Table 1 gives the required CPU time (in second) to obtain the first 20 modes of
the global structure with the corresponding methods on a PC with 1.86GHz Intel Core 2 Duo processor and
2GB memory.
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Table 1

The frequencies and modal shapes of the global structure obtained with different techniques.

Lanczos Original Original–Partial FRFS SRFS

CPU

time (s)

0.1703 0.5640 0.1671 0.1978 0.2413

Mode

index

Frequency

(Hz)

Frequency

(Hz)

Frequency

(Hz)

Relative

error (%)

Frequency

(Hz)

Relative

error (%)

Mode shape error Frequency

(Hz)

Relative

error (%)

Mode shape error

(1-MAC)

(%)

Difference

Norm (%)

(1-MAC)

(%)

Difference

Norm (%)

1 1.7837 1.7837 1.7898 0.341 1.7837 0.000 0.000 0.000 1.7837 0.000 0.000 0.000

2 5.5197 5.5197 5.5495 0.539 5.5197 0.000 0.000 0.000 5.5197 0.000 0.000 0.000

3 9.7392 9.7392 9.7959 0.582 9.7393 0.001 0.003 0.006 9.7392 0.000 0.003 0.005

4 14.4631 14.4631 14.5231 0.415 14.4633 0.001 0.002 0.003 14.4631 0.000 0.002 0.002

5 16.5938 16.5938 18.8166 13.396 16.5995 0.034 0.081 0.000 16.5938 0.000 0.081 0.000

6 18.6944 18.6944 19.8156 5.997 18.7055 0.060 0.130 0.018 18.6946 0.001 0.130 0.021

7 19.7277 19.7277 21.1509 7.214 19.7283 0.003 0.006 0.018 19.7277 0.000 0.006 0.018

8 22.3255 22.3255 25.0778 12.328 22.3502 0.111 0.236 0.029 22.3261 0.002 0.236 0.028

9 24.9127 24.9127 25.4569 2.184 24.9227 0.040 0.099 0.085 24.9128 0.001 0.094 0.040

10 25.4016 25.4016 27.0610 6.533 25.4063 0.018 0.058 0.019 25.4017 0.000 0.044 0.011

11 26.6811 26.6811 27.6134 3.494 26.6832 0.008 0.016 0.062 26.6812 0.000 0.015 0.062

12 28.2301 28.2301 28.5257 1.047 28.2349 0.017 0.043 0.109 28.2302 0.000 0.043 0.108

13 29.3925 29.3925 29.8720 1.632 29.4019 0.032 0.069 0.141 29.3928 0.001 0.068 0.139

14 30.1068 30.1068 30.1980 0.303 30.1080 0.004 0.009 0.020 30.1068 0.000 0.009 0.019

15 30.7279 30.7279 30.8539 0.410 30.7298 0.006 0.007 0.047 30.7280 0.000 0.007 0.046

16 30.8943 30.8943 31.0906 0.635 30.8981 0.012 0.023 0.047 30.8944 0.000 0.023 0.039

17 31.9437 31.9437 32.0649 0.379 31.9460 0.007 0.019 0.067 31.9438 0.000 0.018 0.066

18 32.1127 32.1127 32.3354 0.693 32.1172 0.014 0.034 0.039 32.1129 0.000 0.033 0.033

19 32.8386 32.8386 33.0881 0.760 32.8437 0.015 0.037 0.085 32.8388 0.001 0.034 0.084

20 32.8395 32.8395 33.1796 1.036 32.8476 0.025 0.051 0.048 32.8398 0.001 0.048 0.041
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Other than frequency, mode shape (eigenvector) is another significant data during model updating and
damage identification. There are two means utilized to check the eigenvector’s accuracy of this substructuring
method. Firstly, the popularly used modal assurance criterion (MAC) [27] gives the similarity of two sets of
mode shapes as

MACðffig; ff̃igÞ ¼
jffig

Tff̃igj
2

ðffig
TffigÞðff̃ig

Tff̃igÞ
(39)

In addition, employing the Frobenius norm, the difference norm is applied to indicate the relative error of
mode shapes as

Difference norm ¼
normðffig � ff̃igÞ

normðffigÞ
(40)

in which, ffig is the ith accurate eigenvector obtained from Lanczos method, ff̃ig represents the ith
eigenvector achieved by the proposed substructuring method. The eigenvectors’ errors checked by the above
two methods are listed in Table 1.

From Table 1, one can find that:
(1)
 As compared with the traditional Lanczos method, the original Kron’s substructuring method is very time-
consuming.
(2)
 Utilization of the partial modes introduces a large error. Since the substructures are connected based on
the principle of virtual work, discarding the energy contribution of the higher modes definitely results in
unexpected error.
(3)
 With the proposed method, in which the higher modes are taking into consideration via residual flexibility,
the accuracy of eigenvalues is improved significantly. For example, the relative errors of the first 20
frequencies are less than 0.1% with the FRFS method, and less than 0.002% with the SRFS method. The
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Table 2

The size of eigen-equation with various methods.

Lanczos Original Kron’s method FRFS SRFS

Sub 1 153� 153 50� 50 50� 50

Sub 2 165� 165 50� 50 50� 50

Sub 3 142� 142 50� 50 50� 50

Global structure 408� 408 432� 432 150� 150 174� 174
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accuracy achieved is sufficient for usual engineering applications. As compared with the traditional Kron’s
substructuring method, the proposed method reduces the computation loads significantly.
(4)
 The SRFS method can achieve a higher precision than the FRFS method, but it costs more computation
effort and larger memory.
(5)
 The proposed method not only can convincingly achieve a high precision eigenvalue but also a good
eigenvector result.
(6)
 The proposed substructuring method takes up a little longer time than the Lanczos method without
substructuring. This is because the analyses of each substructure costs a lot of computation effort,
especially calculating the residual flexibility of each substructure. However, the substructuring methods are
promising in the model updating and damage identification applications. With the proposed method, the
repeated calculation of eigensolutions and sensitivity matrix are only required for the substructures of
interest. In addition, the eigen-equation size of the proposed method is much less than that of the Lanczos
method and the original Kron’s substructuring method, as listed in Table 2. This is an attractive merit for
model updating process, which will be studied in the near future.
This simple example indicates that the proposed modal truncation in the substructuring method can reduce
computation load significantly while satisfying a high accuracy. Although the accuracy of the FRFS method is
not as good as that of the SRFS method, it can satisfy most of engineering applications and cost much less
computation resource. Therefore, the FRFS method might be preferable in practical engineering. In the
second example, only the FRFS method will be utilized.

7. Example 2: a practical bridge

To illustrate the efficiency of the proposed method in obtaining the eigensolutions of relatively large
structures, a practical bridge [28] is employed here. The FE model of this bridge has 907 elements, 947 nodes
each has six dofs, and 5420 dofs in total as shown in Fig. 3. The global structure is divided into five
substructures. The tearing points are located at 10, 20, 30 and 40m along the longitudinal direction. The
detailed information of the five substructures is listed in Table 3.

In this example, only the FRFS method is utilized, and the first 40 modes in each substructure are chosen as
master modes. The first 20 eigensolutions of the global structure are calculated and the frequencies are listed in
Table 4, together with the relative errors of the frequencies compared with the exact results using Lanczos
method.

To investigate the effect of the number of the master modes, 60, 80 and 90 modes in each substructure are
chosen as ‘master’. The results and corresponding errors are listed in Table 4. Obviously, the accuracy of
frequencies is improved when more master modes are included in each substructure.

The required number of master modes in each substructure depends on the accuracy requirement. Based on
the error analysis previously described, one should make the minimum value of Kp

s as large as possible.
Sturm’s Sequence check [25] can be employed to determine the number of eigensolutions which are smaller
than a specified value. Nevertheless, when the substructures are similarly divided, one can choose the same
number of master modes in each substructure. From the two examples in this paper, when choosing 40–60
master modes in each substructure, the relative errors of the first 20 frequencies are less than 0.1% for the
FRFS method. It is usually sufficient for model updating and damage identification applications. In this
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Fig. 3. The finite element model of the Balla Balla River Bridge.

Table 3

Information of the substructures.

Index of substructures Sub 1 Sub 2 Sub 3 Sub 4 Sub 5

Geometric range (m)a 0–10 10–20 20–30 30–40 40–54

No. element 187 182 132 182 224

No. node 205 212 161 212 251

No. dofs 1095 1260 966 1260 1371

No. tearing dofs 138 138 138 138

aIn longitudinal direction.

Table 4

The comparison of different master modes quantity.

Exact Original 40 Master modes 60 Master modes 80 Master modes 90 Master modes

CPU

time (s)

8.0253 238.8509 10.3725 10.9643 12.0360 13.0231

Mode

index

Frequency

(Hz)

Frequency

(Hz)

Frequency

(Hz)

Relative

error (%)

Frequency

(Hz)

Relative

error (%)

Frequency

(Hz)

Relative

error (%)

Frequency

(Hz)

Relative

error (%)

1 5.8232 5.8232 5.8288 0.097 5.8281 0.084 5.8269 0.064 5.8269 0.063

2 5.9998 5.9998 6.0028 0.051 6.0028 0.051 6.0028 0.051 6.0028 0.051

3 6.0007 6.0007 6.0038 0.052 6.0038 0.051 6.0037 0.051 6.0037 0.051

4 6.2635 6.2635 6.2691 0.089 6.2677 0.066 6.2670 0.055 6.2669 0.053

5 6.8621 6.8621 6.8656 0.051 6.8655 0.051 6.8655 0.051 6.8655 0.051

6 6.8987 6.8987 6.9023 0.052 6.9023 0.052 6.9022 0.051 6.9022 0.051

7 6.9975 6.9975 7.0034 0.084 7.0022 0.067 7.0012 0.053 7.0012 0.052

8 7.7391 7.7391 7.7465 0.095 7.7449 0.075 7.7434 0.056 7.7432 0.053

9 8.6063 8.6063 8.6142 0.092 8.6128 0.075 8.6110 0.054 8.6109 0.053

10 8.7145 8.7145 8.7205 0.069 8.7197 0.059 8.7191 0.053 8.7191 0.052

11 9.4460 9.4460 9.4535 0.079 9.4525 0.068 9.4510 0.053 9.4510 0.053

12 10.9814 10.9814 10.9870 0.051 10.9870 0.051 10.9870 0.051 10.9870 0.051

13 10.9816 10.9816 10.9872 0.051 10.9872 0.051 10.9872 0.051 10.9872 0.051

14 12.1302 12.1302 12.1511 0.172 12.1417 0.094 12.1387 0.070 12.1375 0.059

15 13.0048 13.0048 13.0227 0.137 13.0167 0.091 13.0126 0.060 13.0122 0.057

16 13.2693 13.2693 13.2868 0.132 13.2810 0.088 13.2771 0.059 13.2767 0.056

17 14.9312 14.9312 14.9431 0.080 14.9421 0.073 14.9405 0.062 14.9399 0.058

18 15.8194 15.8194 15.8880 0.434 15.8610 0.263 15.8347 0.097 15.8337 0.090

19 16.9266 16.9266 16.9515 0.147 16.9463 0.116 16.9380 0.067 16.9370 0.062

20 17.5480 17.5480 17.6043 0.321 17.5646 0.095 17.5609 0.074 17.5602 0.070
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Table 5

The size of eigen-equation with various methods.

Lanczos Kron’s original method FRFS

Sub 1 1095� 1095 60� 60

Sub 2 1260� 1260 60� 60

Sub 3 966� 966 60� 60

Sub 4 1260� 1260 60� 60

Sub 5 1371� 1371 60� 60

Global structure 5420� 5420 5952� 5952 300� 300

Table 6

The matrix size and computation time with different division formation.

No. substructures 3 5 8 11

Scheme 1

No. master modes in each substrucutre 80 80 80 80

Eigen-equation size of the global structure 240 400 640 880

CPU time (s) 20.8 12.8 16.7 26.1

Scheme 2

No. master modes in each substrucutre 133 80 50 37

Eigen-equation size of the global structure 399 400 400 407

CPU time (s) 24.9 12.8 13.4 22.7
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example, when 60 master modes are chosen in each substructure, the eigen-equation size of the global
structure can be heavily reduced with the proposed FRFS method as listed in Table 5.

Certainly, not only the master modes selection but also the division formation of the substructures will
influence the accuracy and efficiency. For a determined global structure, there are various division formations
of the substructures. From a practical point of view, cutting a building through columns’ joints is better than
through the slabs, and cutting a bridge avoiding the piers is better than across the piers, in order to reduce the
interface joints. This can reduce the size of the transformation matrix C.

To investigate the influence of the substructures’ division formation, the bridge is approximately averaged
into 3, 5, 8, 11 substructures, respectively, along the longitudinal direction. For the different division
formations, the selection criterion of the master modes is considered in the following two schemes.

In the first scheme, the first 80 modes in each substructure are chosen as master modes. The master modes in
each substructure and the eigen-equation size of the global structure are listed in Table 6, together with the
corresponding CPU time spent on calculating the first 40 eigensolutions of the global structure. The relative
errors of frequencies are compared in Fig. 4.

It can be found that, except dividing the global structure into three substructures, other three division
formations achieve similar accuracy, although the division formation with more substructures can achieve a
slightly better precision.

The division formations of three and eleven substructures cost more computation time than that of five and
eight. This is because too few substructures cause each substructure has a large amount of elements and nodes.
Correspondently, calculation of the eigensolutions and the residual flexibility of each substructure will cost
more CPU resource. On the other hand, the global structure is divided into more substructures. Although each
substructure has smaller size, one has to cope with more substructures. In addition, the final eigen-equation of
the global structure has a larger size. From the comparison of these four division formations, it can be
concluded that dividing the global structure into much excessive substructures or too few substructures are
both unpreferable. In this case study, dividing the global structure into five substructures cannot only reach
the high precision but also save computation resource.
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Fig. 5. The relative errors of frequencies with various substructure division formations (scheme 2).
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Fig. 4. The relative errors of frequencies with various substructure division formations (scheme 1).
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In the second scheme, the total number of master modes is selected around 400, but each substructure has
different number of master modes, as listed in Table 6. The CPU time cost in calculating the first 40
eigensolutions of the global structure with these four division formations are listed in Table 6, and the relative
errors of frequencies are compared in Fig. 5.

Fig. 5 shows that, if the total number of the master modes among all substructures is determined, more
substructures will result in lower precision. This is because more substructures imply less master modes in each
substructure, and thus minðKp

s Þ is not big enough. In contrast, fewer substructures will achieve a higher
precision, since it includes more master modes in each substructure. However, if the global structure is divided
into too few substructures, it will cost much CPU time to calculate the eigensolutions and the residual
flexibility matrix for the big substructures. Furthermore, when applying the substructuring method in model
updating, the calculation of the sensitivity matrix in each substructure will be heavier, and the substructuring
technology may lose its promising advantages. In practice, a few trials may be helpful before model updating
and/or damage identification is employed.
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8. Conclusions and discussions

A substructuring method has been presented in this paper to calculate some lowest eigensolutions of large-
scale structures. A modal truncation approximation is proposed to reduce the computation load. With the
compensation of the residual flexibility, only a few eigensolutions of the substructures are needed. A frame
with hundreds of dofs and a bridge structure with thousands of dofs are used to illustrate the procedures of the
proposed method. For super-large structures such as those with millions of dofs, traditional eigensolutions
may be more difficult and time-consuming as even storage of entire system matrices is prohibited. The
substructuring method can be a promising option, or combined with some other reduction techniques such as
Ref. [5]. This merits further studies.

There are two strategies to improve the calculation precision, that is, selecting more master modes in
the substructures or utilizing the SRFS method instead of the FRFS method. The utilization of the
second-order residual flexibility can achieve much better results than that of the first-order residual flexibility,
while increases the computation effort greatly. Furthermore, similar to the model reduction technique
[6,25], the proposed substructuring method may be developed by combining an iterative model reduction
scheme.

For a determined structure, dividing it into excessive or insufficient number of substructures are both
undesirable. The division formations need to trade off the number of substructures and the number of master
modes in each substructure.

The more significant merit of the proposed method lies in the applications to model updating and damage
identification. In general, model updating and damage identification need to re-calculate the eigensolutions
and sensitivity matrix of the entire structure when the parameters of some elements are changed. With the
substructuring method, only particular substructures need to be re-analyzed, while other substructures can be
untouched. This will be studied in the future.
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Appendix A. Transformation matrix

This section aims to illustrate the procedure of the substructuring method and the associated symbols using
a simple structure.

The global structure has two elements and three nodes (a, b, c) each has 3 dofs as Fig. A1(a). It is torn into
two substructures at node b as Fig. A1(b).The node b at tearing point is expanded into node b1 and node b2 in
the two substructures.

If fx1; x2; x3g
T is the displacement vector of node a in substructure 1, and fx4;x5;x6g

T is the displacement
vector of node b1 in substructure 1, the eigensolutions of the first substructure are written as

Kð1Þ ¼ Diag½lð1Þ1 ; l
ð1Þ
2 ; l

ð1Þ
3 ; l

ð1Þ
4 ; l

ð1Þ
5 ; l

ð1Þ
6 �; Uð1Þ ¼

fð1Þ1;1 fð1Þ1;2 fð1Þ1;3 fð1Þ1;4 fð1Þ1;5 fð1Þ1;6

fð1Þ2;1 fð1Þ2;2 fð1Þ2;3 fð1Þ2;4 fð1Þ2;5 fð1Þ2;6

fð1Þ3;1 fð1Þ3;2 fð1Þ3;3 fð1Þ3;4 fð1Þ3;5 fð1Þ3;6

fð1Þ4;1 fð1Þ4;2 fð1Þ4;3 fð1Þ4;4 fð1Þ4;5 fð1Þ4;6

fð1Þ5;1 fð1Þ5;2 fð1Þ5;3 fð1Þ5;4 fð1Þ5;5 fð1Þ5;6

fð1Þ6;1 fð1Þ6;2 fð1Þ6;3 fð1Þ6;4 fð1Þ6;5 fð1Þ6;6

2
6666666666664

3
7777777777775

(A.1)
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Fig. A1. Two element connected point: (a) the global structure and (b) the substructures.
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Similarly, fx7;x8;x9g
T and fx10; x11;x12g

T is the displacement vectors of nodes b2 and c in substructure 2,
respectively. To be an independent structure, the eigensolutions of the second substructure are

Kð2Þ ¼ Diag½lð2Þ1 ; . . . ; l
ð2Þ
6 �; Uð2Þ ¼

fð2Þ1;1 fð2Þ1;2 fð2Þ1;3 fð2Þ1;4 fð2Þ1;5 fð2Þ1;6

fð2Þ2;1 fð2Þ2;2 fð2Þ2;3 fð2Þ2;4 fð2Þ2;5 fð2Þ2;6

fð2Þ3;1 fð2Þ3;2 fð2Þ3;3 fð2Þ3;4 fð2Þ3;5 fð2Þ3;6

fð2Þ4;1 fð2Þ4;2 fð2Þ4;3 fð2Þ4;4 fð2Þ4;5 fð2Þ4;6

fð2Þ5;1 fð2Þ5;2 fð2Þ5;3 fð2Þ5;4 fð2Þ5;5 fð2Þ5;6

fð2Þ6;1 fð2Þ6;2 fð2Þ6;3 fð2Þ6;4 fð2Þ6;5 fð2Þ6;6

2
6666666666664

3
7777777777775

(A.2)

Diagonal assembling the two substructures to the primitive form gives

Kp
¼

Kð1Þ

Kð2Þ

" #
; Up ¼

Uð1Þ

Uð2Þ

" #
(A.3)

The node b1 and node b2 are constrained to move jointly, i.e., x4 ¼ x7, x5 ¼ x8, x6 ¼ x9, then the constraint
matrix C is formed as

C ¼

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

�1 0 0

0 �1 0

0 0 �1

0 0 0

0 0 0

0 0 0

2
64

3
75 (A.4)

With the procedure described in this paper, the eigenvalues and the expanded eigenvectors of the global
structure can be obtained as

K ¼ Diag½l1; . . . ; l9�; U ¼

f1;1 � � � f1;j � � � f1;9

..

. . .
.

fi;1 fi;j
..
.

..

. . .
.

f12;1 � � � f12;9

2
66666666664

3
77777777775

(A.5)

The eigenvalues of the original global structure are equal to L as

K ¼ K ¼ Diag½l1; . . . ; l9� (A.6)

The eigenvectors of the original global structure are obtained after discarding the identical values in U. For
the jth eigenvector,

fj ¼ ff1;j ;f2;j ;f3;j ;f4;j ;f5;j ;f6;j ;f7;j ;f8;j ;f9;jg
T ¼ ff1;j ;f2;j ;f3;j ;f4;j ;f5;j ;f6;j ;f10;j ;f11;j ;f12;jg

T

¼ ff ;f ;f ;f ;f ;f ;f ;f ;f gT (A.7)
1;j 2;j 3;j 7;j 8;j 9;j 10;j 11;j 12;j
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Appendix B. The first- and second-order residual flexibility

For an arbitrary structure with n dofs, M, K, K, U represent the mass, stiffness, eigenvalue and eigenvector
matrices, respectively. With mass normalization, one has

UTMU ¼ In

UTKU ¼ K

(
(B.1)

If the eigensolutions of the structure are divided into m ‘master’ modes and s ‘slave’ modes (m+s ¼ n) with the
same procedure described in this paper, the eigensolutions of the structure can be reassembled as

Km ¼ Diag½l1; l2; . . . ; lm�

Um ¼ ½f1;f2; . . . ;fm�

Ks ¼ Diag½lmþ1; lmþ2; . . . ; lmþs�

Us ¼ ½fmþ1;fmþ2; . . . ;fmþs� (B.2)

Accordingly, the orthogonality relationship satisfies:

UT
mMUm ¼ Im

UT
mKUm ¼ Km

(
;

UT
s MUs ¼ Is

UT
s KUs ¼ Ks

(
;

UT
mMUs ¼ 0

UT
mKUs ¼ 0

(
(B.3)

The dynamic flexibility matrix can be transformed as

K�1 ¼ ½Um Us�
K�1m 0

0 K�1s

" #
UT

m

UT
s

" #
¼ UmK�1m UT

m þUsK
�1
s UT

s (B.4)

Therefore,

UsK
�1
s UT

s ¼ K�1 �UmK�1m UT
m (B.5)

The left item is denoted as the first-order residual flexibility.
When the ‘master’ eigenvalues contain zero values, an arbitrary small shift e needs to be introduced usually

as �5Ks. The first-order residual flexibility can be approximated as

UsK
�1
s UT

s ffi UsðKs þ �Þ
�1UT

s ¼ ðKþ �MÞ
�1
�UmðKm þ �Þ

�1UT
m (B.6)

Further exploration for the second-order residual flexibility introduces:

K�1MK�1 ¼ ðUmK�1m UT
m þUsK

�1
s UT

s ÞMðUmK�1m UT
m þUsK

�1
s UT

s Þ

¼ UmK�1m UT
mMUmK�1m UT

m þUsK
�1
s UT

s MUsK
�1
s UT

s

þUsK
�1
s UT

s MUmK�1m UT
m þUmK�1m UT

mMUsK
�1
s UT

s (B.7)

Due to the orthogonality relationship in Eq. (B.3), it is easy to obtain that

K�1MK�1 ¼ UmK�2m UT
m þUsK

�2
s UT

s (B.8)

Therefore, the second-order residual flexibility can be expressed as

UsK
�2
s UT

s ¼ K�1MK�1 �UmK�2m UT
m (B.9)

A small shift e can be introduced to avoid zero values in Km as

UsK
�2
s UT

s ffi Us½Ks þ ��
�2UT

s ¼ ðKþ �MÞ
�1MðKþ �MÞ�1 �UmðKm þ �Þ

�2
m UT

m (B.10)

The above equations in this appendix are applicable to an arbitrary structure, and thus can be applied to the
substructures as employed in the present paper.
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